

DATA SHEET Hall Effect Current Sensor

PN: CHB500LTS15D100

I_{PN}=500A

Supply voltage: DC $\pm 15 \sim 24$ V

Feature

- Closed- loop (compensated) current transducer
- High accuracy type, it can really measure resolution 1000:1
- Capable precision measurement of currents: DC, AC, pulse with galvanic isolation between primary circuit and secondary circuit.

Advantages

- High accuracy
- Easy installation
- Low temperature drift
- Optimized response time
- High immunity to external interference

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

• Can be customized

1

RoHS

Electrical data:	(Ta=25°C±5°C)
------------------	---------------

Ref Parameter	CHB500LTS15D100		
Rated input Ipn(A)	500		
Measuring range Ip(A)	0~±1000		
Turns ratio Np/NS (T)	1:5000		
Output current (A)	Nominal output current 100mA, for primary nominal current I _N =500A		
Measure resister $R_M(\Omega)$	with±15V @500Amax 0(min) 40(max)		
	with±15V @1000Amax 0(min) 40(max)		
	with±24V @500Amax 7(min) 75(max)		
	with±24V @1000Amax 7(min) 20(max)		
Accuracy (Ta =+25)	$I_{ m N}{\pm}0.5\%$		
Supply voltage VC(V)	(±15 ~ ±24) ±5%		
Isolation voltage	Between primary and secondary circuit: 6KV RMS/50Hz/1min.		
Offset current (Ta =+25°C)	±0.3mA max, for primary current I _N =0		
Temperature drift	I _M of 0.02%/°C (-25°C+85°C)		

 $C \in$

Cheemi Technology Co., Ltd

Tel: 025-85996365 E-mail: info@cheemi-tech.com www. cheemi-tech.com Add:N22, Xianlongwan, Xianyin South Road, Qixia District, Nanjing - China.

Cheemi Technology Co., Ltd

Linearity error $\epsilon r(\%FS)$	@Ip=0-±Ipn	≤0.1
Di/dt accurately followed (A/μs)		> 50
Response time tra(µs)	@50A/μS	<1
Frequency bandwidth		0~100KHz
Current consumption		35mA+I _M (Output current)
Secondary resistance		80Ω (Ta =+70°C)
Primary resistance		

General data:		
Parameter	Value	
Operating temperature TA(°C)	-50°C+85°C	
Storage temperature TS(°C)	-50°C+90°C	
Mass M(g)	500	
Plastic material	UL94-V0.	
Standards	EN60947-1:2004	
	IEC60950-1:2001	
	EN50178:1998	
	SJ 20790-2000	

Dimensions(mm):

Secondary terminals:

Terminal +: supply voltage +15...24V
Terminal -: supply voltage -15...24V

Terminal M: output

Remarks:

- 1. All dimensions are in mm.
- 2. General tolerance ± 1 mm.

Cheemi Technology Co., Ltd

Wiring diagram:

Remarks:

- 1. Output I_M is positive, when the primary current flows in the direction of the arrow.
- 2. Primary current is input by a bus bar.

Directions for use:

- When the current goes through the primary pin of a sensor, the voltage will be measured at the output end.
- Is will be in a forward direction when the Ip flows according to the direction of arrowhead.
- Custom design is available for the different rated input current and the output voltage.
- > The dynamic performance is the best when the primary hole if fully filled with.
- ➤ The primary conductor should be ≤ 120 °C.

WARNING: Incorrect wiring may cause damage to the sensor.

