

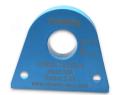
DATA SHEET DC Leakage Current Sensor

P/N: CHD_LCT15D5

 $I_{PN}=10\sim100 \text{mA}$

Feature

- DC Leakage Current Sensor develops on base of magnetic modulation closed loop principle
- Apply unique patented technology for measure tiny current (mA level)
- This sensor is used to measure current of signal system, circuit, and leakage monitoring system, as well as to measure current difference.
- Supply voltage: DC $\pm 12 \sim 15 \text{ V}$


Advantages

- High accuracy
- Easy installation
- Wide current measuring range
- Optimized response time
- Low power consumption
- High immunity to external interference

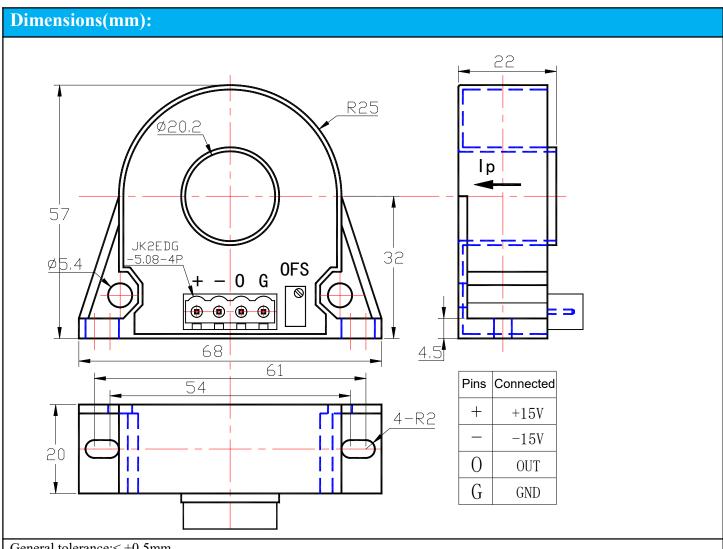
Applications

- The current detection of the lift
- DC panel detection
- The signal system
- Current differential detection
- AC variable-speed drive/ Servo drive
- UPS and Inverter applications

- Very good linearity
- Can be customized

CE RoHS

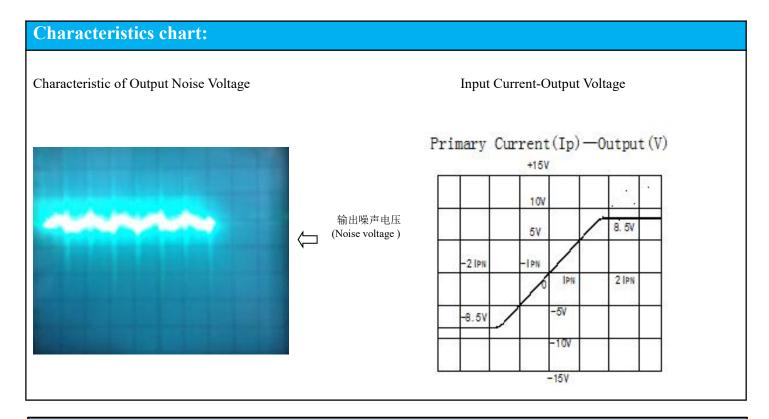
Electrical data: (Ta=25°C, Vc=±15VDC)							
Parameter Ref	CHD10 LCT15D5	CHD20 LCT15D5	CHD30L CT15D5	CHD40L CT15D5	CHD50L CT15D5	CHD100 LCT15D5	CHD1000 LCT15D5
Rated input Ipn	±10mA DC	±20mA DC	±30mA DC	±40mA DC	±50mA DC	±100 mA DC	±1000 mA DC
Measuring range Ip	0~±15mA	0~±30mA	0~±45mA	0~±60mA	0~±75mA	0∼ ±150mA	0∼ ±1500mA
Turns ratio(Np/Ns) (T)	1:50	1:100	1:150	1:200	1:250	1:400	1:400
Output voltage Vo(V)	$@$ Ip= \pm Ipn $\pm 5 \pm 0.5\%$						
Supply voltage V _C (V)	(±12~±15) ±5%						
Accuracy X _G (%)	$@I_{PN},T=25^{\circ}C$ $\leq \pm 1$						
Offset voltage V _{OE} (mV)	@Ip=0,T=25°C <±50						
Offset voltage drift V _{OT} (mV/°C)	$@I_{P}=0,-40 \sim +85^{\circ}C$ $\leq \pm 1.5$						
Linearity error er(%FS)	≤1.0						
Response time tra(mS)	≤60 ≤35						



Cheemi Technology Co., Ltd

Tel: 025-85996365 E-mail: info@cheemi-tech.com www. cheemi-tech.com Add:N22, Xianlongwan, Xianyin South Road, Qixia District, Nanjing - China.

Consumption current (mA)		20+IpX(Np/Ns)	
Insulation voltage Vd(KV)	@50/60Hz, 1min,AC	2.5	
General data:			


Parameter	Value			
Operating temperature TA(°C)	-40 ∼ +85			
Storage temperature TS(°C)	-40~ +125			
Mass M(g)	99			
Plastic material	PBT G30/G15, UL94- V0;			
	IEC60950-1:2001			
Standards	EN50178:1998			
	SJ20790-2000			

General tolerance: < ±0.5mm

Primary through-hole: D20.2±0.15mm

Remarks:

- When the current goes through the primary pin of a sensor, the voltage will be measured at the output end.
- > Custom design is available for the different rated input current and the output voltage.
- The dynamic performance is the best when the primary hole if fully filled with.
- ➤ The primary conductor should be <100°C.

WARNING: Incorrect wiring may cause damage to the sensor.

