

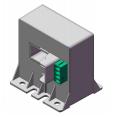
DATA SHEET Hall Effect Current Sensor

P/N: CHB500LAE15D250S-S11

 $I_{PN} = 500A$

Feature

- Closed- loop (compensated) current transducer
- Supply voltage: DC ±15~24 V Capable measurement of currents: DC, AC, pulse with galvanic isolation between primary circuit and secondary circuit.


Advantages

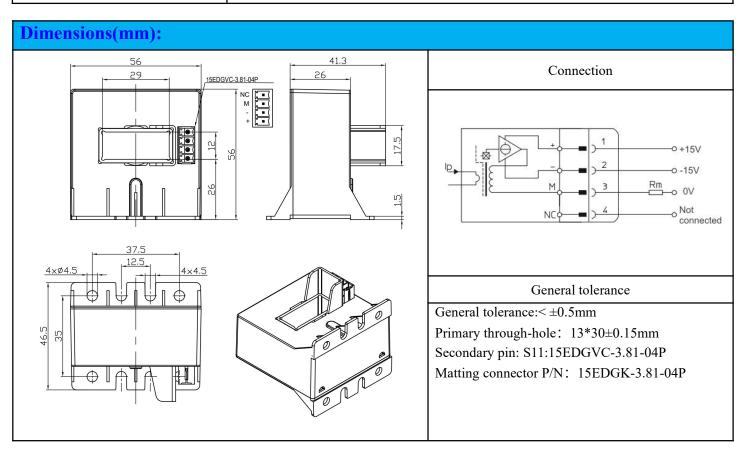
- High accuracy
- Easy installation
- Low temperature drift
- Optimized response time
- High immunity to external interference

Applications

- The application of induction cooker
- AC/DC variable-speed drive
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Inverter applications

- Very good linearity
- Can be customized

RoHS


Electrical data: (Ta=25°C, Vc=±24VDC)				
Parameter Ref	CHB500LAE15D250S-S11			
Nominal current RMS Ipn(A)	500			
Measuring range Ip(A)	0 ~ ±700			
Turns ratio Np/N _S (T)	1:2000			
Output current I _S (mA)	$\pm I_{P}*1000/N_S$			
Secondary coil resistance $R_S(\Omega)$	33 (only for referance)			
Measuring resistance $R_M(\Omega)$	$[(V_C-0.5V)/(I_S*0.001)]-R_S$			
Supply voltage V _C (V)	$(\pm 15 \sim \pm 24) \pm 5\%$			
Accuracy X _G (%)	$@I_{PN}, T=25^{\circ}C$ < ±0.5			
Offset current I _{OE} (mA)	$@I_P=0,T=25^{\circ}C$ < ± 0.2			
Temperature variation of I _{OE} I _{OT} (mA/°C)	$@I_P=0,-40 \sim +85^{\circ}C$ $<\pm0.5$			
Linearity error $\varepsilon r(\%FS)$	< 0.1			
Di/dt accurately followed (A/μs)	> 100			
Response time tra(μs)	$@90\% \text{ of } I_{PN}$ < 1.0			

Cheemi Technology Co., Ltd

Power consumption I _C (mA)		25+Is	
Bandwidth BW(KHZ)	@-3dB, I _{PN}	DC-100	
Insulation voltage Vd(KV)	@50/60Hz, 1min,AC	5.5	

General data:			
Parameter	Value		
Operating temperature T _A (°C)	- 40 ∼ +85		
Storage temperature $T_S(^{\circ}C)$	-55~ +125		
Mass M(g)	130		
Plastic material	PBT G30/G15, UL94- V0;		
	IEC60950-1:2001		
Standards	EN50178:1998		
	SJ20790-2000		

Remarks:

- When the current goes through the primary pin of a sensor, the voltage will be measured at the output end.
- Custom design is available for the different rated input current and the output voltage.
- > The dynamic performance is the best when the primary hole if fully filled with.
- ➤ The primary conductor should be <100°C.

WARNING: Incorrect wiring may cause damage to the sensor.

