

DATA SHEET Hall Effect Current Sensor

P/N: CHB300LAE15D150M

 $I_{PN}=300A$

Feature

- Closed- loop (compensated) current transducer
- Supply voltage: DC ±12~18 V Capable measurement of currents: DC, AC, pulse with galvanic isolation between primary circuit and secondary circuit.

Advantages

- High accuracy
- Easy installation
- Low temperature drift
- Optimized response time
- High immunity to external interference

Applications

- The application of induction cooker
- AC/DC variable-speed drive
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Inverter applications

Very good linearity

Can be customized

RoHS

Electrical data: (Ta=25°C, Vc=±15VDC)			
Parameter	CHB300LAE15D150M		
Ref			
Rated input Ipn(A)	300		
Measuring range Ip(A)	0 ~ ±700		
Turns ratio Np/N _s (T)	1:2000		
Output current rms I _S (mA)	$\pm 150*\mathrm{I_{P}/I_{PN}}$		
Secondary coil resistance R_S (Ω)	100 (only for referance)		
Inside resistance $R_M(\Omega)$	$[(V_C-0.5V)/(I_S*0.001)]-R_S$		
Supply voltage V _C (V)	(±18 ~ ±24) ±5%		
Accuracy X _G (%)	$@I_{PN},T=25^{\circ}C$ $<\pm0.5$		
Offset current I _{OE} (mA)	$@I_P=0,T=25^{\circ}C$ < ±0.2		
Temperature variation of I _{OE} I _{OT} (mA/°C)	$@I_P=0,-40 \sim +85^{\circ}C$ < ± 0.5		
Linearity error $\varepsilon r(\%FS)$	< 0.1		
Di/dt accurately followed (A/µs)	> 100		
Response time tra(μs)	$@90\% \text{ of } I_{PN}$ < 1.0		

Cheemi Technology Co., Ltd

Power consumption I _C (mA)		25+Is	
Bandwidth B _W (KHZ)	@-3dB, I _{PN}	DC-100	
Insulation voltage Vd(KV)	@50/60Hz, 1min, AC	5.5	

General data:				
Parameter	Value			
Operating temperature $T_A(^{\circ}C)$	-40 ~ +85			
Storage temperature $T_S(^{\circ}C)$	-55~ +125			
Mass M(g)	130			
Plastic material	PBT G30/G15, UL94- V0;			
	IEC60950-1:2001			
Standards	EN50178:1998			
	SJ20790-2000			

Remarks:

- When the current goes through the primary pin of a sensor, the voltage will be measured at the output end.
- > Custom design is available for the different rated input current and the output voltage.
- The dynamic performance is the best when the primary hole if fully filled with.
- ➤ The primary conductor should be <100°C.

WARNING: Incorrect wiring may cause damage to the sensor.

