

DATA SHEET Hall Effect Current Sensor

PN: CHB LAE15D100

IPN=100~400A

Feature

- Closed- loop (compensated) current transducer
- Supply voltage: DC ±15~24 V
- Capable measurement of currents: DC, AC, pulse with galvanic isolation between primary circuit and secondary circuit.

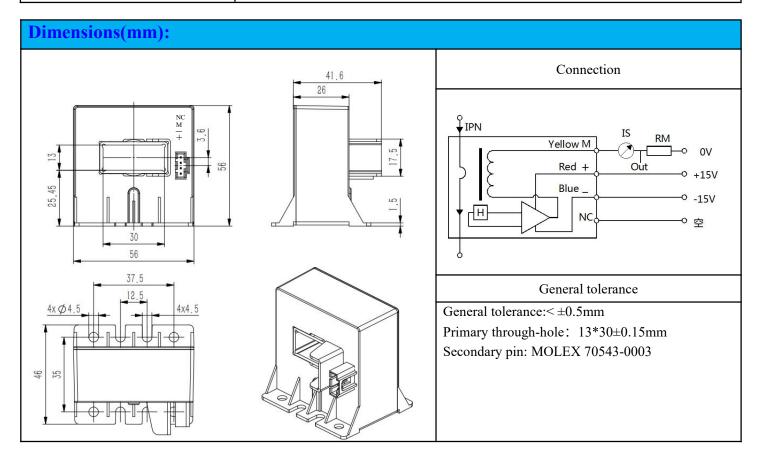
Advantages

- High accuracy
- Easy installation
- Low temperature drift
- Optimized response time
- High immunity to external interference

Applications

- The application of induction cooker
- AC/DC variable-speed drive
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Inverter applications

- Very good linearity
- Can be customized


Electrical data: (Ta=25°C, Vc=±15VDC)						
Ref Parameter	CHB100 LAE15D100	CHB200LAE 15D100	CHB300 LAE15D100	CHB300 LAE15D60	CHB400 LAE15D100	CHB400 LAE15D80
Rated input Ipn(A)	100	200	300	300	400	400
Measuring range Ip(A)	0 ~ ±350	0 ~ ±600	0 ~ ±700	0 ~ ±700	0 ~ ±700	0 ~ ±700
Turns ratio Np/NS (T)	1:1000	1:2000	1:3000	1:5000	1:4000	1:5000
Output current rms I _S (mA)	$\pm 100*I_{P}/I_{PN}$	$\pm 100*I_P/I_{PN}$	$\pm 100*I_P/I_{PN}$	$\pm 60*I_P/I_{PN}$	$\pm 100*I_P/I_{PN}$	$\pm 80*I_P/I_{PN}$
Secondary coil resistance $R_S(\Omega)$	10	18	40	88	60	88
Inside resistance $R_{M}(\Omega)$	[(VC-0.5V)/(IS*0.001)]-R _S					
Supply voltage VC(V)	(±15 ~ ±24) ±5%					
Accuracy X _G (%)	@ I_{PN} , T=25°C $< \pm 0.5$					
Offset current I _{OE} (mA)	$@I_P = 0, T = 25°C$ < ±0.2					
Temperature variation of I_{OE} $I_{OT}(mA/^{\circ}C)$	$@I_P=0,-40 \sim +85^{\circ}C$ < ± 0.5					
Linearity error εr(%FS)	< 0.1					
Di/dt accurately followed (A/μs)	> 100					
Response time tra(µs)	@90% of I _{PN} < 1.0					
Power consumption I _C (mA)	25+Is					

Cheemi Technology Co., Ltd

Bandwidth BW(KHZ)	@-3dB,I _{PN}	DC-100	
Insulation voltage Vd(KV)	@50/60Hz, 1min,AC	5.5	

General data:				
Parameter	Value			
Operating temperature TA(°C)	-40 ∼ +85			
Storage temperature TS(°C)	-55~ +125			
Mass M(g)	130			
Plastic material	PBT G30/G15, UL94- V0;			
Standards	IEC60950-1:2001			
	EN50178:1998			
	SJ20790-2000			

Remarks:

- > When the current goes through the primary pin of a sensor, the voltage will be measured at the output end.
- > Custom design is available for the different rated input current and the output voltage.
- > The dynamic performance is the best when the primary hole if fully filled with.
- ➤ The primary conductor should be <100°C.

WARNING: Incorrect wiring may cause damage to the sensor.

